
Real-Time Linux Quadcopter - Technical Takeaways
Charlie Sands - September, 2022 - Northville, Michigan

Overview
While studying the Linux Kernel in order to become a contributor I
became interested in the kernel process scheduler. More specifically, I
wanted to understand how Linux was being used in industrial
environments for automation and systems control. I decided to modify my
old DJI 450 airframe quadcopter in order to use a custom flight controller
based on the PREEMPT-RT framework running under Linux. Running
under an instance of BuildRoot, I wrote real-time code that runs under the
preemptive scheduler to manage the real-time systems on quadcopter, such
as angle detection, motor control and auto leveling. The standard Linux
“Completely Fair Schedule” manages the network stack, vehicle
movement command scheduling and other non-time critical tasks. I also

experimented with writing my own driver for motor control, however, the final product did
not implement my driver for stability reasons. The onboard Linux computer used in the
quadcopter is a Raspberry Pi Zero W. All hardware management is done over I2C.

Algorithms and Control Schemes
The quadcopter uses a combination of algorithms to control its heading,
attitude and altitude. I implemented many proportional integral derivative
(PID) control loops in order to manage the onboard systems. There are seven
PID controllers used on the quadcopter. The first three controllers are for
pitch, roll and yaw control while the following four control motor speed for
each individual rotor. These controllers are not, strictly speaking, necessary,
however, they should (in theory) reduce strain on the motors by not abruptly
jumping between motor speeds. The system is optimized such that if the
requested change in rotor speed is small enough, the controller is deactivated
to save valuable processing time. In order to deduce the pitch, roll and yaw
location of the quadcopter I implemented the Madgwick inertial measurement unit algorithm in
my code. This algorithm fuses the data from the quadcopter’s accelerometer, gyroscope and
compass to determine an appropriate heading and attitude of the aircraft. This data can then be used to correct to calculate the
error between the current and target aircraft positions. The mathematical concepts that allow this to work are far beyond me at this

point, but my implementation, based on those of others, worked well.

Safe and Reliable Systems
In order to ensure the safety of people around the quadcopter I incorporated a network
ping system that ensures that if a WiFi connection is lost with the computer
controlling it, nothing bad happens. In addition to this I had to ensure that all
best-practices were followed. Steps such as clearing all of the PWM controller’s
pulse width control registers when disabling the quadcopter are important to ensure
that the rotors do not erratically spin up when the aircraft is re-enabled.

My quadcopter with the protective
flight controller cover removed

Running a single tethered rotor
on my “PID test” jig

Approximate Cost $300

Approximate time spent 3 months

Skills developed - Closed Loop Control Algorithms
- Embedded Linux Development
- Avionic Systems
- Safe and Reliable System Design

Testing the IMU algorithm with a 3D
box corresponding to the position of
the control board prototype

https://buildroot.org/

