
Vehicle Predictive Maintenance - Technical Takeaways
Charlie Sands - October, 2023 (in progress) - Northville, Michigan

Overview
I am currently working on reverse engineering the CAN sensor
communication in my vehicle, decoding the data transmitted by the sensors
and using their information to preemptively determine what part of the
vehicle is likely to fail next. The platform I chose for this project is a 2.4L
2012 Chevrolet Malibu which I purchased, damaged, in an insurance auction.
I have designed a custom data acquisition system, head unit display terminal,
a CAN bus adapter, and the vehicle’s onboard computers. The vehicle’s
computers gather data from various onboard sensors. The data is sent over
the CAN bus either by the sensor itself, or the computer it is connected to.
The CAN bus adapter, which is based on a Raspberry Pi 4 running Linux,

gathers, filters and decodes this data with the help of a built-in CAN driver before relaying it
over HTTP to the head unit. The head unit aggregates the data, saves it to disk and displays it

to the vehicle’s operator. My goal is to generate artificial failures, log how the data is affected by these changes. Eventually, these
labeled conditions will be used to train an artificial intelligence system that will run on the head unit, constantly analyzing current
conditions and predicting future component failures. In conjunction with this, I am working on a small, inexpensive board that is
able to collect and transmit data to a remote server for analysis, making this concept more marketable and affordable.

CAN Reverse Engineering
I started by using a commercial diagnostic CAN adapter to decode the data,
however, General Motors uses multiple buses, with non-standard
implementations. I was forced to replace the commercial adapter with a self
made one that can interact effectively with both buses to log and decode
data. I determined that the majority of the data is encoded with industry
standard floating point and integer encoding schemes. My reverse
engineering efforts have centered around determining which CAN message
IDs correspond to what vehicle subsystems. This has proven difficult,
presently I have deduced ~70% of the vehicle’s sensors. Once I have
reverse engineered the rest of the sensors, I will be able to focus on refining
the analysis I am currently doing on the data and training the AI model.

Timeline and Side Projects
Currently my predictive maintenance system is on schedule to have a “minimum demonstrable product” complete by mid March
2024, in time for exposition at my local science and engineering faire. I wish to continue development of the concept after that,
reaching a higher level of completion in the late summer of 2024. I am currently working on a provisional patent application for
the unique aspects of the system. While working on this project I have discovered various interesting aspects of my vehicle that

are not directly related to diagnostics, such as the ability to programmatically control engine speed.
This has inspired other side projects including using computer vision to detect the distance of other
cars in a line of traffic and programmatically optimize the timing and magnitude of vehicle
acceleration to increase fuel efficiency and smoothness. I am concurrently working on this as well.

My vehicle’s front seat, custom
controls and display terminal

Analyzing CAN signal from my car’s
ECU on my oscilloscope

The PCB I created to
cost-optimize my design

Approximate Cost $2000

Approximate time spent 4 months so far, 6-10 month future timeline

Skills developed - Digital Printed Circuit Board Design
- Embedded Software Development
- Industrial Communication Protocols
- Safe and Reliable System Design

