
Vulkan 3D Renderer - Technical Takeaways
Charlie Sands - September, 2022 - Northville, Michigan

Overview
I started my Vulkan 3D renderer during the pandemic in order to pass the
time, improve my programming practices and learn more about high
performance data processing. The engine is written in C++ and uses the C
Vulkan bindings to interact with the API. My goal was to create an engine
that has enough features to support the development of an A or AA game.
Currently my engine supports rendering multiple objects, lighting with
diffuse and point lights, on screen GUIs, multiple different shaders, particle
systems, animated objects, cube-map rendering, audio, asset loading with
ASSIMP and object transparency among other things. I do not use other
libraries for memory management, I manage all V-RAM allocations and
deallocations myself. Some issues still exist within the engine.
Unfortunately, when school started I needed to begin work on my WiFi

tracking system because it was a class project and I ran out of time to complete my renderer. It
is about 95% complete, I still hope to finish it entirely one day. Many of my renderer’s features

were inspired by ThinMatrix’s OpenGL 3D renderer, but implemented in Vulkan, not OpenGL and with C++, not Java. Many of
his assets were used for testing in my renderer.

Programming Best Practices
One of my main goals in creating my renderer was to improve how I wrote
C++, and by extension C, code. I chose a rigid styling pattern enforced by
clang-format. I used namespaces in order to segment my code from other
libraries and code readability. I used tools such as Valgrind and
RenderDoc often to profile CPU and GPU memory usage and ensure there
were no growing memory leaks or performance bottlenecks in my code. I
avoided the use of subclasses in my code in order to improve
understandability and reduce time spent refactoring. I carefully planned
my progress in Markdown files in order to keep the project on-track and
consistently moving forward. I developed many time management and
planning skills I have used in my other projects. Additionally, I learned about the
effective use of documentation and abandoned my reliance on tutorials

Memory Management and API Interaction
I wanted to work with lower level hardware systems with this project. One aspect of this is memory management systems. Vulkan
provides near direct access to the GPU driver which means any memory that it allocates must be managed by the program.
Additionally, much like in C, all the memory must be manually deallocated when it is no longer needed. In order to ensure that no
memory is gradually leaked from my application over time I created a global tracking system for all GPU memory that is able to
effectively track and release all used VRAM at the end of execution. I created a similar system for more general access to the API.
Each call to the API requires lots of, oftentimes redundant, information. I created an object tracking system to effectively manage

this data through different classes, making creation of Vulkan API objects easier.

An animated cowboy running
rendered in real time

A profiling output from RenderDoc used
to improve my rederer’s performance

A flaming transparent barrel
displayed by my renderer

Approximate Cost $0

Approximate time spent 4 months

Skills developed - Interaction with High Performance APIs
- Userspace Linux Development
- Code Reliability
- Inverse Kinematics and Animation

https://github.com/assimp/assimp

