
WiFi Tracking System - Technical Takeaways
Charlie Sands - January, 2022 - Northville, Michigan

Overview
For my International Baccalaureate Personal Project I wanted to track the
locations of the people in my school. I reasoned that the most effective, cost
friendly way to accomplish this was to analyze the relative WiFi signal strength
of their mobile devices at multiple points and trilaterate the location in the room.
I bought six Meraki (Yay, RoofNet!) MR18 wireless access points. These access
points are cheap, simple and, due to a software vulnerability, easy to flash with
custom firmware. I connected my Raspberry Pi 3 to the JTAG debug header of
the device and used the Open On-Chip Debugger to interrupt the boot process
and reflash the onboard memory. I installed OpenWRT, a Linux-based operating
system for network appliances. I developed software that places all but one of

the access point’s radios into “monitor mode” and records as much network data as possible. I
set the remaining wireless radio to transmit the data to a processing server. Based on the

relative signal strengths from 3-6 access points the processing server determined the location of the device. The calculated device
location data was sent over a cellular uplink to a web server where the results were displayed.

Rewriting the Boot Flash
The boot sequence and JTAG of the Meraki MR18 are not protected. After the
hardware is initialized by the bootloader it is possible to stop the boot procedure of the
device using a breakpoint set over JTAG. With the execution stopped, I overwrote the
part of RAM that contains the factory Linux image the processor was about to load.
When I resumed instruction execution the processor loaded and executed a minimal
Linux image copied into RAM rather than the factory image. With the access point
bootstrapped into a minimal rooted Linux environment it was possible for me to bring
up the network stack and copy a full version of OpenWRT into the boot flash of the
device from an HTTP server. After rebooting the access point would now be running
OpenWRT instead of Meraki’s custom version of Linux. Chris Blake’s (riptidewave93)
work was instrumental in performing the code injection. I had to modify his procedure
to work with my flashing setup, however, his analysis revealed the proper place to stop
code execution and the correct memory address for loading the initial and permanent
Linux images. He was also responsible for compiling the initial Linux image used to bootstrap the installation.

System Network Architecture
When an access point is connected to my network, it sends self identification data to the aggregation server to inform it of its
physical location. The aggregation server adds it to a directory of known receivers. The access point begins sending packet
monitoring summaries, in JSON format, to a REST API running on the data aggregation server. Each discovered device and all of

its signal strength information is added to a queue. A separate trilateration program sends an API
request to retrieve signal strengths in the queue. Based on the directory of receivers and signal
strength information an approximate location is calculated and the old data is discarded. The web
frontend makes an API request for the devices and their locations, returning it to their browser.

The flashing jig I built in order to
jailbreak my wireless access points

A map generated by my system showing
the location of a mobile device

One of my MR18s with
the rear shell removed

Approximate Cost $100

Approximate time spent 6 months

Skills developed - Hardware Penetration Testing and Hacking
- Embedded Software Development
- Computer System Network Architecture
- Efficient Transmission of Big Data

https://github.com/riptidewave93

